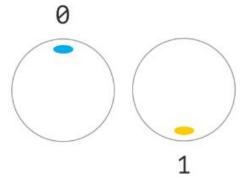

MONET+

Post Quantum Challenge

business breakfast

Mgr. Anežka Pejlová

Security Architect & RECS team lead



What is PQC?

Classical vs. Quantum computer

bits

- 0 or 1
- nothing in between
- classical

qubits

- any superposition between 0 and 1
- measurement = final state
- dependent on the probability of superposition
- quantum

Quantum computers

- change of paradigm in computer world
- more effective solution to some hard problems
- significant progress/breakthrough in
 - O A
 - o optimization problems
 - o discovery/development process
 - o financial modeling
 - weather forecasting
 - cybersecurity
 - 0 ...

Quantum impact on classical cryptography

Shor's algorithm (1994)

- factorization (RSA)
- discrete logarithm (DH, ECC)

Asymmetric cryptography

Grover's algorithm (1996)

- state space search (keys, collisions)
- probably hard parallelizable

Symmetric cryptography

Post-quantum cryptography (PQC)

- cryptography secure against attacks by CRQC
- based on "hard" mathematical problems from different areas:
 - error-correcting codes
 - lattices
 - hash functions
 - multivariate polynomials
 - o isogeny of supersingular elliptic curves
- PQ algorithms are feasible on classical computers
 - vs. quantum cryptography (ie. QKD)

Why to bother with PQC?

Quantum impact on classical cryptography

Which systems are **NOT affected** by CRQC?

What does it mean "affected"?

Encryption

- confidentiality
- privacy

Signature

- integrity
- non-repudiation
- authentication

After

...Decrypt later
Impersonate users by fraudulent authentication
Manipulate digitally signed documents / certificates

Are we ready?

Layered Matrix Challenge

Standards Implementations Adoption SW/system/apps solution protocols HW modules formats & structures infrastructure **HW** acceleration organization approach algorithms libs people

Standards

Algorithms

- **NIST** standards (08/2024)
 - ML-KEM
 - ML-DSA
 - SLH-DSA
 - FN-DSA (draft)
- IETF RFCs (2018/2019)
 - XMSS signatures
 - LM signatures
- **KpqC** (01/2025)
 - HATAE ~ ML-DSA, AlMer
 - SMAUG-T ~ ML-KEM, NTRU+

Coming standards

NIST

- FN-DSA (draft)
- additional KEMs → HQC (03/25)
- on-ramp signatures

China

- NGCC launch 02/2025
- PK, hash, block cipher expected

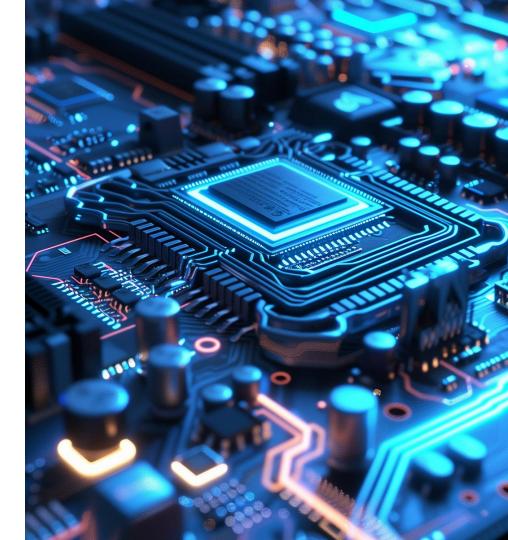
EU

- ISO/IEC 18033-2:2006/CD Amd 2under development
- incl. of NIST standards expected
- joint statement of 18 EU states

Standards for usage

Identifiers & formats

- OID
- NIST CSOR
- JOSE and COSE
- XML still missing


Usage

- ITU-T / ISO-IEC / RFC (X.509)
- TLS
- CMS
- JWE
- SAML
- PKCS#11

Support in HW/SW

- OQS project
 - TLS, SSH, X.509, CMS, S/MIME
 - Utimaco, Thales, Entrust,
 IBM, Cisco, Debian,
 SandboxAQ, ...
- proprietary implementations
 - Microsoft (SymCrypt)
 - o Google (Tink)
 - O ...
- HSMs and SCs
 - Thales
 - o IBM, Entrust

Layered Matrix Challenge

Standards

Implementations

Adoption

protocols

formats & structures

approach

algorithms

SW/system/apps

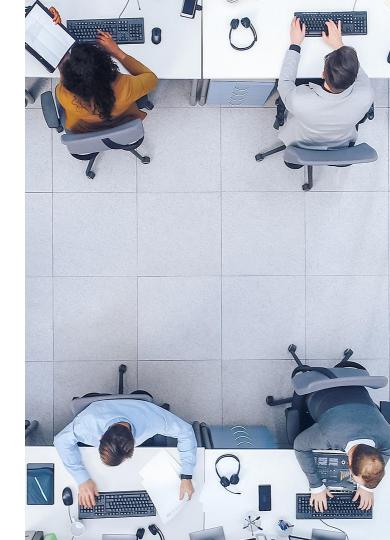
HW modules

HW acceleration

libs

solution

infrastructure


organization

people

Cryptographic agility

Crypto-agility

- design supporting smooth change of crypto primitives without extensive system changes
- ideal drop-in replacement
- without downtime of applications
- robust approach to implementing cryptography needed

Crypto-agility practically

- create crypto-inventory of all crypto assets and their dependencies
- develop governance and strategic roadmap on top of crypto-inventory
- design flexible and modular architecture
- ensure interoperability with use of standardized interfaces/protocols
- avoid hardcoded crypto algorithms and their parameters
- automate processes around PKI and key management

Crypto-agility practically

01

create
crypto-inventory of
all crypto assets and
their dependencies

02

develop **governance** and strategic roadmap on top of crypto-inventory

03

design flexible and modular architecture

04

ensure interoperability with use of standardized interfaces/protocols

05

avoid hardcoded crypto algorithms and their parameters

06

automate processes around PKI and key management

Key takeaways

Mosca's Theorem

X = Security Shelf life

Y = Migration Time

Z = Time to compromise

If X + Y > Z then system can be compromised!

CRQC maturity

Start now... ...relax later

PQC readiness

NOW!

Is the best time to start with PQ migration preparation

How can we help you?

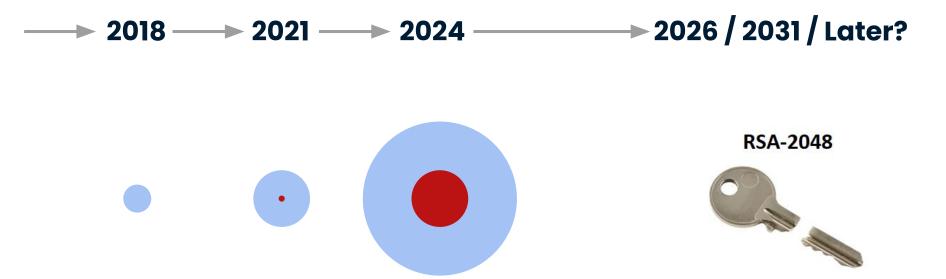
- map the environment
 - technical view
 - recommendation of (security) authorities
- create crypto-inventory
- build crypto-agile solutions
- define migration strategy for each case
- decide priorities
- prepare robust migration playbook
- migrate to PQ-ready solution case by case

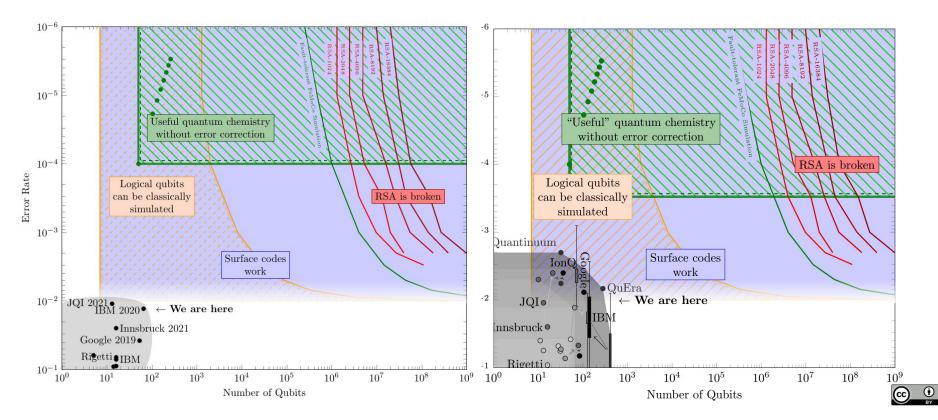
MONET+

Thank you for your attention!

Contact me

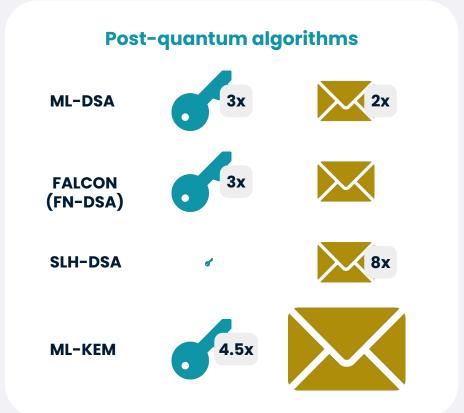
Mgr. Anežka Pejlová


apejlova@monetplus.cz

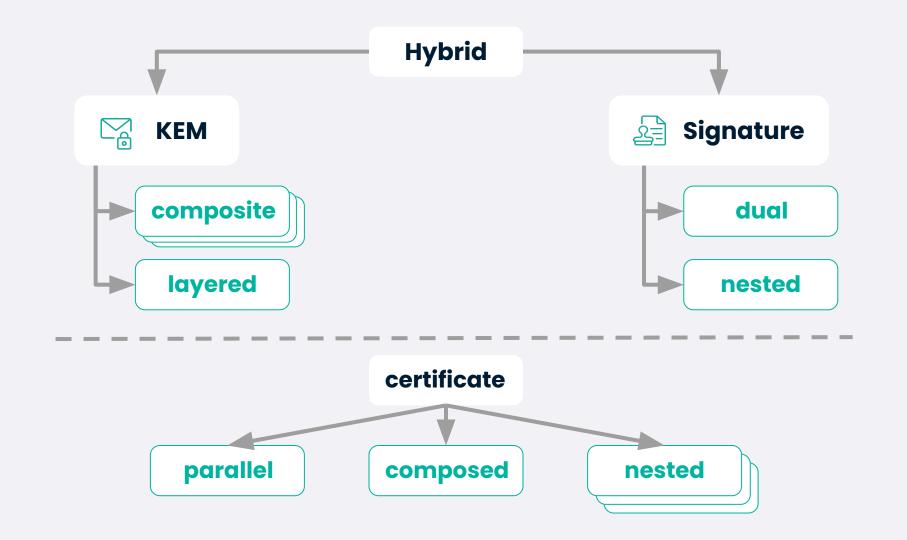


When?

Evolution of quantum computers


Landscape of Quantum Computing in 2021 vs. 2024

Can we make a simple switch?


Key and signature/message size

Classical algorithms EC DH **ECDH**

Key and signature/message size

		PK (bytes)	SK (bytes)	sig/msg (bytes)
Signatures	RSA-2048	256	256	256
	EC-P256	65	32	65
	ML-DSA-44	1312	2528	2420
	FALCON-1024	1793	2305	1280
	SLH-DSA-*-128s	32	64	7856
КЕМ	DH	300	32	96
	ECDH	32	32	65
	ML-KEM-1024	1568	3168	1588

